首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34449篇
  免费   3248篇
  国内免费   1717篇
电工技术   1832篇
综合类   2659篇
化学工业   4300篇
金属工艺   2397篇
机械仪表   1465篇
建筑科学   4911篇
矿业工程   1925篇
能源动力   2650篇
轻工业   852篇
水利工程   825篇
石油天然气   2176篇
武器工业   238篇
无线电   5143篇
一般工业技术   3723篇
冶金工业   919篇
原子能技术   363篇
自动化技术   3036篇
  2024年   70篇
  2023年   511篇
  2022年   769篇
  2021年   1049篇
  2020年   1111篇
  2019年   968篇
  2018年   840篇
  2017年   1115篇
  2016年   1149篇
  2015年   1262篇
  2014年   2106篇
  2013年   2014篇
  2012年   2535篇
  2011年   2831篇
  2010年   2069篇
  2009年   2105篇
  2008年   1970篇
  2007年   2264篇
  2006年   2134篇
  2005年   1713篇
  2004年   1473篇
  2003年   1384篇
  2002年   1118篇
  2001年   999篇
  2000年   780篇
  1999年   601篇
  1998年   447篇
  1997年   390篇
  1996年   320篇
  1995年   289篇
  1994年   221篇
  1993年   188篇
  1992年   172篇
  1991年   97篇
  1990年   73篇
  1989年   64篇
  1988年   49篇
  1987年   29篇
  1986年   16篇
  1985年   23篇
  1984年   18篇
  1983年   15篇
  1982年   14篇
  1981年   17篇
  1980年   8篇
  1979年   10篇
  1976年   2篇
  1975年   2篇
  1959年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
12.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
13.
High energy consumption is considered to be one of the most persistent problems in liquid hydrogen (LH2) plants. The combination of heat exchanger and ortho-para (O–P) hydrogen conversion has attracted considerable attention as a cutting-edge technology to reduce energy consumption. The flow and heat transfer characteristics of O–P hydrogen conversion catalyst-filled spiral wound heat exchanger (SWHE) were investigated in this study in two steps. In the first step, pressure-drop experiments were performed in a tube filled with porous media. The results indicated that the pressure drop was overestimated when using Ergun's equation. Therefore, a new empirical pressure-drop correlation for a channel filled with O–P catalyst was formulated. Subsequently, a novel heat transfer model was established based on this correlation for further numerical simulations. The distributions of the temperature, pressure, and para hydrogen content in a catalyst-filled tube were determined. In addition, the influence of the flow rate on the heat exchange coefficient and outlet para hydrogen was clarified; it was found that, with an increase in the flow rate, the heat exchange coefficient increased, whereas the outlet para hydrogen content decreased. At a flow rate of 0.5 m3/h, the para hydrogen content increased by 44% after hydrogen flowed through the channel filled with the O–P catalyst. Furthermore, a prediction model for the para hydrogen content with a flow rate range of 0–1.5 m3/h was derived. This study provides promising theoretical evidence for the engineering application of SWHEs filled with O–P catalysts in large-scale hydrogen liquefaction units.  相似文献   
14.
曾敏  王华  邹均名  李文斌 《中国造纸》2022,41(4):102-106
本文从内表面防结露、夏季隔热2个角度出发,对夏热冬冷及夏热冬暖地区代表城市采用的钢结构屋面的保温(隔热)层厚度进行计算分析。研究表明,在夏季室内温、湿度达到某一状态时,隔热厚度要大于冬季防结露的保温厚度。因此,夏热冬冷地区的造纸车间钢屋面保温层厚度应按夏季隔热计算确定,并进行冬季防结露验算;夏热冬暖地区按照冬季防结露计算即可。  相似文献   
15.
《Ceramics International》2022,48(22):32696-32702
Aluminum nitride (AlN) ceramics are becoming cutting-edge materials for electronic information and communication. However, raw AlN hydrolyzed rapidly, and the high storage costs of this material prevent widespread application. In this study, raw AlN was modified by boric acid (H3BO3) at 30 °C to enhance hydrolysis resistance. Transmission electron microscope (TEM), X-ray diffraction (XRD), the magic angle spinning nuclear magnetic resonance (27Al-MAS-NMR and 11B-MAS-NMR), and the fourier transform infrared spectrometer (FTIR) were used to characterize the powder before and after treatment, and the mechanism of hydrolysis resistance was determined. Modification with 0.1 M boric acid did not change the crystal phase of the AlN particles. The modified powder did not hydrolyse at 90% humidity and 70° Celsius. In the presence of boric acid, a network structure of B–O–B linkages ([BOn], n = 3 or 4) formed that was connected to the AlN core via chemical bonds of B–N–Al and B–O–Al. The protective 6 – 10 nm-thick layer that formed on the surface of the AlN crystal, prevented attack by water molecules and hindered the hydrolysis of aluminium nitride. This study provides an alternative means of preparing anti-hydrolysis AlN powders.  相似文献   
16.
基于深度学习的图像超分辨率算法通常采用递归的方式或参数共享的策略来减少网络参数,这将增加网络的深度,使得运行网络花费大量的时间,从而很难将模型部署到现实生活中。为了解决上述问题,本文设计一种轻量级超分辨率网络,对中间特征的关联性及重要性进行学习,且在重建部分结合高分辨率图像的特征信息。首先,引入层间注意力模块,通过考虑层与层之间的相关性,自适应地分配重要层次特征的权重。其次,使用增强重建模块提取高分辨率图像中更精细的特征信息,以此得到更加清晰的重建图片。通过大量的对比实验表明,本文设计的网络与其他轻量级模型相比,有更小的网络参数量,并且在重建精度和视觉效果上都有一定的提升。  相似文献   
17.
According to the International Energy Agency, only a small part of the full potential of biomass energy is currently used in the world. The annual amount of agricultural waste in the Russian Federation is estimated at about 152 million tons, and the energy potential of animal waste is 201 PJ/year. Anaerobic digestion is an efficient method of converting organic waste into renewable energy sources. Previously, the positive effect of pretreatment of various organic feedstocks in vortex layer apparatus (VLA) on the characteristics of anaerobic digestion and energy efficiency was shown. Currently, there is a significant interest in the world in obtaining biohydrogen from organic waste using the dark fermentation (DF) process. During pretreatment in the VLA, the iron working bodies are abraded and iron particles are introduced into the feedstock of the DF reactor. This may have a positive effect on the production rate and yield of hydrogen, which has not been previously studied. This work is aimed at evaluating the possibility of using the VLA as a method for pretreatment of a dark fermentation feedstock for the intensification of biohydrogen production. To achieve this goal, an experimental setup was constructed. It consisted of a 45 L DF reactor, a VLA and a process control system to collect data on the DF process parameters every 5 min. At a hydraulic retention time in the DF reactor of 24 h and in the VLA of 30 s, the hydrogen content in the biogas increased from 51.1% to 52.2%. At the same time, the pH increased from 3.85 to 4.8–4.9, and the hydrogen production rate increased by 16% to 1.941 L/(L day). The hydrogen yield was 80.9 ml/g VS. Thus, pretreatment of the feedstock in VLA can be an effective way to intensify the DF process; however, further study of the VLA operating modes is required in order to optimize the concentrations of iron particles introduced into the feedstock for the most efficient continuous production of dark fermentative biohydrogen.  相似文献   
18.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
19.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
20.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号